BACKGROUND

- Globlastoma multiforme (GBM) is the most common and most aggressive primary brain tumor
- More than 300,000 new cases are diagnosed globally with over 250,000 deaths each year
- Patients with recurrent GBM have a poor prognosis, with limited treatment options and a median survival of less than 1 year
- While prior attempts to treat GBM with chimeric antigen receptor (CAR) T-cells have been limited by tumor heterogeneity, chlorotoxin (CLTX)-directed CAR T-cells in mice demonstrated broad anti-tumor activity and prolonged survival with no off-tumor toxicity or antigen escape
- CLTX, a 36-amino acid peptide identified in scorpion venom, selectively binds to malignant glioma cells through matrix metalloproteinase-2 (MMP2) and clinical administration of CLTX-based biologics has been well-tolerated in patients
- CHM 1101 is the first CAR T to utilize CLTX as its tumor targeting domain for autologous CAR T-cell therapy
- The following was observed in an ongoing single-center first-in-human phase 1 study of CHM 1101 in patients with recurrent GBM:
 - Safety: no dose-limiting toxicities; one cerebral edema possibly attributed to CHM 1101
 - Efficacy: 75% disease control rate with survival up to 15.5 months
- Clinical Trial NCT05627323 is a phase 1b, multi-center study of CHM 1101 in adult subjects with MMP2+ recurrent or progressive GBM after standard therapy

PRECLINICAL ANTI-GBM ACTIVITY

- Tumor control by CLTX-CAR T-cells led to prolonged survival
- CLTX-CAR T-cells exhibited no observable off-target effector activity or toxicity to normal tissues (data not shown)

MMP2 BIOMARKER

- Direct correlation between CLTX binding and MMP2 localization in GBM tumor tissue
- MMP2 is required for anti-tumor activity of CLTX-CAR T-cells (CHM 1101) in GBM

THE PATIENT JOURNEY

- After leukapheresis and tumor resection, CHM 1101 is administered across 3 once-weekly (Days 0, 7, and 14) intracranial (intraventricular) infusions
- After disease assessment at Day 28, additional weekly doses of CHM 1101 may be administered in the absence of disease progression or unacceptable toxicity

STUDY DESIGN AND ENDPOINTS

OBJECTIVES:

- PFS
- OS
- ORR (RANO)
- Safety & feasibility
- RP2D
- Cellular kinetics

PART A - DOSE CONFIRMATION

- Recurrent/progressive glioblastoma
- 440 x 10^6/3-6 patients

PART B - DOSE EXPANSION

- Recurrent/progressive glioblastoma
- 440 x 10^6/12-26 patients

CHLOROTOXIN DEVELOPMENT

- fluorescein CLTX (Tumor Paint), crosses BBB and differentiates GBM from normal tissue in surgery
- Radiolabeled CLTX (131I-TM-601) is safe, feasible and shows signs of antitumor activity

ACKNOWLEDGEMENTS

We thank the patients and their families, caregivers, and the study investigators, staff, and clinical sites for participating in this study. Medical writing support was provided by Christopher Waldapfel, PharmD of Red Thread Communications, with funding from Chimeric Therapeutics, Ltd.

DISCLOSURES

BB: consulting, advisory role, and research support from Chimeric Therapeutics; research funding from NIH, patient EPH131398101 granted. AA: employment at Chimeric Therapeutics. CH: employment and equity ownership in Chimeric Therapeutics. SM: employment and equity ownership in Chimeric Therapeutics. JBL: employment and equity ownership in Chimeric Therapeutics.

REFERENCES

KEY PATIENT ELIGIBILITY

- Age 18 years and older
- Eastern Cooperative Oncology Group (ECOG) status of 0 or 1
- Life expectancy ≤12 weeks
- Histologically confirmed diagnosis of grade 4 GBM, a grade 2 or 3 malignant glioma with radiographic progression consistent with a grade 4 GBM (IDH wild type), grade 4 diffuse astrocytoma (IDH mutant), or a unifocal relapse of GBM
- Relapsed disease: radiographic evidence of recurrence/progression of measurable disease after standard therapy and ≥ 12 weeks after completion of front-line radiation therapy
- MMP2+ tumor expression confirmed by IHC (≥20% moderate/high MMP2 score (2+ or 3+))
- Adequate baseline organ function and venous access for leukapheresis